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Models in Robotics

@ Kinematic Models
Kinematics studies of motion of bodies and systems based only on geometry, i.e.
without considering the physical properties and the forces acting on them. The
essential concept is a pose (position and orientation).

® Dynamic Models
Dynamics studies the relationship between the forces and moments acting on a
robot and accelerations they produce,

@ Geometric Models
Geometry: Mathematical description of the shape of bodies
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Kinematic Model (1) Q(IT

Karlsruhe Institute of Technology
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Kinematic Model (2) ﬂ(IT

Karlsruhe Institute of Technology

Two spaces

Joint space /

Task space /

Configuration space (C) Workspace (W)

b
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Kinematic Model (3) ﬂ(IT

Karlsruhe Institute of Technology

@ Definition

® The kinematic model of a robot describes the relationships between
the joint space (robot coordinates, configuration space) and
the space of end effector poses in world coordinates (task space, Cartesian space).

@ Areas of application
® Relationship between joint angles and poses of the end effector
® Reachability analysis
@ Geometric relation between the body parts of the robot (self-collision)
@ Geometric relation to the environment (collision detection)

b
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Forward Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Direct kinematics problem
® |nput: Joint angles of the robot
® Qutput: Pose of the end effector
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Inverse Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Inverse kinematics problem
® |Input: Target pose of the end effector
® Qutput: Joint angles
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Outline: Direct and Inverse Kinematics

Joint space
(configuration space)

~

(64,...,0,) €ECSR"

N

n: Joint degrees of freedom (DoF)
m: Cartesian degrees of freedom
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Transformation

Direct Kinematics

x = £(6)

Inverse Kinematics

6=f"®

KIT

Karlsruhe Institute of Technology

Cartesian coordinates
(task space)

AN

X c R™

»/Position and orientation of

the end effector
xEEF = (X,y,Z, CZ,,B,]/)
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Elements of a Kinematic Chain
r |

Arm elements
(links, segments)

\, -

aSe of the "’é

r¢irobot arth—

b
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Kinematic Chain: Definition

@ Definition:
A kinematic chain is formed by several bodies that are kinematically
connected by joints (e.g. robot arm).

® Types: Q
L\ AN
Open kinematic chain Closed kinematic chain

b
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Kinematic Chain: Conventions

® Each arm element corresponds to one rigid body.

B Each arm element is connected to the next one
by a joint.

® For prismatic and rotational joints:
Each joint has only one degree of freedom
(translation or rotation).

B Kinematic parameters:

® Joint definition (e.g. rotation axis)

® Transformation between joints

b
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Kinematic Parameters

® Joint parameters
® Revolute joint: rotation axis
® Prismatic joint: direction of translation
o ..

W Specification of the positions of joints relative
to each other

® Fixed transformation between two joints
® Defines the local coordinate systems of the joints

® Transformation from joint i — 1 to joint i with
transformation matrix ‘1T
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Number of Parameters of the Kinematic Chain
® A transformation must be determined for each link:

@ 3 rotation parameters
® 3 translation parameters

=>» 6 parameters per link of the kinematic chain

b
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Denavit-Hartenberg (DH) Convention

@ Goal: Reduction of the parameters for describing an arm element

@ Properties
@ Systematic description of relations (translations and rotations)

between adjacent joints '/
@ Reduction of the number of parameters from 6 to 4 T
@ Description with homogeneous matrices \ /

Literature: Denavit, Hartenberg: , A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,
Journal of Applied Mechanics, 1955, vol 77, pp 215-221

b
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DH Convention for the Choice of Coordinate Systems

® Each coordinate system is determined on the basis of the following three rules:
1.  The z;_;-axis lies along the axis of movement of the i-th joint

2. The x;-axis lies along the common normal of z;_; and z;
(direction via cross product: x; = z;_1 X z;)
3.  The y;-axis completes the coordinate system according to the right-hand rule

[ € {base, 1,...,n}
- Derivation of parameters for arm element and joint

® Remark
® Other variants of the DH convention can also be found in the literature
® |n this lecture we consider the modified variant of Waldron and Paul
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DH Convention: Parameters of the Arm Element (1)

@ Each arm element i is embedded between two jointsi and i + 1
® 7; runs along the jointaxis i + 1

jointi+1

b
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DH Convention: Parameters of the Arm Element (2)

@ Link length a; of an arm element i describes the distance from z;_; to z;
B x; lies along the normal of z;_; and z; (cross product)
jointi+1

b
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DH Convention: Parameters of the Arm Element (3)
0 describes the angle from z;_; to z; around Xx;.
jointi+1

b
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DH Convention: Parameters of the Arm Element (4)

0 is the distance between x;_;-axis and x; -axis
along the z;_,-axis

jointi+1

b
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DH Convention: Parameters of the Arm Element (5)

® Joint angle 6; is the angle from x;_; to x; around z;_;

b
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DH Parameters

® The four parameters a; , «; , d; and 6; are called DH parameters.

@ They describe the transformations between two successive
rotational or translational robot joints
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DH Parameters (Denavit-Hartenberg Parameters)
Parameter Symbol Revolute joint Prismatic joint
Link length a constant constant
Link twist a constant constant
Link offset d constant variable
Joint angle 0 variable constant
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Transformation Between Two Robot Joints
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DH Transformation Matrices (1)

Transformation from LCS;_ to LCS;

1. Arotation 6; around the Zi_1 cosf —sind 0 0
Z;_,-axis so that the x;_;-axis Vi_q sinf.  cosB 0 0
is parallel to the x;-axis. - R, ,(8) = ‘ '
P i oy S 21t 0 0 10
i 0 0 0 1
2. Atranslation d; along the +Z;_4
Z;_1-axis to the point where L, e
Z;_41 and x; intersect. S, 1 0 0 O
di| 42, ro@y=[° 1 0 0
' Zi—1 0 0 1 d;
0O 0 0 1

x.
LCS;: Local Coordinate System of joint i L
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DH Transformation Matrices (2)

Transformation from LCS;_ to LCS;

3. Atranslation g; along the

x;-axis to align the origins T 1 0 0 g
of the coordinate systems. - T. (a;) = 01 0 O
Sa X Y1l 00100
a; .
4.  Arotation a; around the » 0 001
x;-axis to convert the '
Z;_4-axis into the z;-axis.
a; 4 47 1 0 0 0
' 0 cosa; —sina; O
. - v Ry.(a;) = l i
Zi i (i) 0 sina; cosa; O
X; 0 0 0 1

LCS;: Local Coordinate System of joint i
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DH Transformation Matrices (3) ﬂ(IT

Transformation LCS;_4 to LCS;
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Inverse DH Transformation ﬂ(IT

Transformation from LCS;_1 to LCS;

_ T
Ny 0y Ay Uy ne n, n, —nu
n, 0, a, u o, 0, 0, —olu
T = y y y y T-1 = X y z
n, o0, @ u . See chapter 1

o o0 o0 1 a a, a, —au
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Concatenation of DH Transformations ﬂ(IT

@ By concatenating the DH matrices, the pose of individual coordinate systems
relative to the reference coordinate system can be determined.

@ Position of the m-th coordinate system relative to the base coordinate system:

® This is a mapping of the configuration space C € R" to the workspace W c R™

b
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DH Parameters — Notes

® The four parameters a; , a; , d; and 6; are called DH parameters.

B Important: Reference coordinate system (RCS) and end effector coordinate
system (ECS) of the kinematic chain

® As intuitive as possible; set so that the associated
DH parameters are simple (preferably zero)

® RCS as the coordinate system of the first joint
in zero position

@ End effector coordinate system at an
‘important reference point’ at the end effector

X7
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Summary: Determination of the DH Parameters ﬂ(IT

Sketch of the manipulator

Identify and enumerate the joints (1, ..., last link = n)
Draw the axes z;_, for each joint i

Determine the parameters a; between z;_;and z;

Draw the x;—axes

Determine the parameters «; (twist around the x;-axes)
Determine the parameters d; (link offset)

Determine the angles 6; around the z;_;-axes

Compose the joint transformation matrices 4;_ ;

O X N O U A WD e

b
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Direct Kinematics Problem (1) ﬂ(IT

® Direct kinematics problem
® |nput: Joint angles of the robot
® Qutput: Pose of the end effector
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Direct Kinematics Problem (2)

B The pose of the end effector (EEF) is to be determined from
the DH parameters and the joint angles.

B The pose of the end effector (EEF) in relation to the RCS is given by:

SRCSEEF(Q) —AO 1(91) A12(02) . n 2,n— 1(911 1) An 1n(9n)
_(R t
- (OT 1)

W Joint angles 84, ..., 8,, are given = The pose of the EEF is obtained from the
equation above by inserting the joint angle values.

¥ b
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Example 1: Planar Robot (in xy-Plane)

Bruno Siciliano
Lorenzo Sciavicco
Luigi Villani
Giuseppe Oriolo

Roboné9

Modelling, Planning and Control

ANIS53308d TUNOIG ONU 10HLINO] NI SHODBLK3I| 03aNENOY
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Example 1: Planar Robot z-axes are parallel ﬂ(IT

N O tra n S I at i O n i n Z_d i re Ctio n Karlsruhe Institute of Technology

Joint a; Q; d; 0,
1 a, 0 0 01
2 a, 0 0 0,
3 as 0 0 03

cosf; —sinb;-cosa; sinf;-sina; a;-cosb;

A= sinf; cos6; -cosa; —cosB;-sina; a;-sinb;
- 0 sin a; cos ; d;
0 0 0 1

o= O O

Ci —Si
Si G
0 0
0 0
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Example 1: Planar Robot
AO 3(0) — A() 1° A1 2 ° AZ 3 = 5123 C123 0 ai51 + aA»S12 + a35123
’ ’ ’ ' 0 0 1 0
| 0 0 0 1

Abbreviations: ¢;,3 = cos(6; + 0, + 63), s1,3 = sin(8; + 6, + 083), etc.

¥ b
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Example 2: 3D RotAmt ﬂ(IT

Karlsruhe Institute of Technology

Z Z3
1 0 —90 0 0,
2 0 90 d, 6,
3 0 0 d, 0
Cl 0 'Sl O
s 0 Cy 0
Ao = 0 -1 0 0
0 0 0 1

0 sin ; cos ; d;
0

cosf; —sinf;-cosa; sinf;-sina; a;-cosb;
A _ |sinf; cos6; -cosa; —cosB;-sina; a;-sinb;
=

Aj_q;= Rzi_l(ei) ' Tzi_l (d;) - Txi(ai) ) in(ai)

1
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Example 2: 3D Ro?ot -ﬁ‘(IT

z Z3
1 0 —90 0 0,
2 0 90 d, 0,
3 0 0 d, 0
_CZ 0 S, 0 |
A12 =1 1 0 d,
0 0 0 1

< &
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Example 2: 3D RotAmt -ﬁ‘(IT

z Z3

1 0 —90 0 0,
2 0 9% d, 6,
3 0 0 d, 0
1 0 0 0|

0 1 0 0

A23 =1 0 1 d
0 0 0 1

¥ b
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Example 2: 3D Robot -ﬁ‘(IT

Karlsruhe Institute of Technology

C1Sy  C1S2d3 — S1dy
S1Sy  S1S,d3; + c1d,
C C2d3
0 1 l

A0,3 (0) = Ao,1 ’A1,2 'A2,3 —

W
[
o
N
oo,&’ol,
p—
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DH Notation: Arm of ARMAR-I ﬂ(IT

N T A e
1 0, 30 —90 0

2 6,-90 O —90 0

3 05 + 90 0 90 2235
4 0, 0 —90 0

5 0 0 90 270
6 06 + 90 0 —90 0

7 0, 140 90 0
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Forward Kinematics (1)

| Given: 6, A;_,;(6)
@ Desired: Sbase,EEF(H)

Ai_1;(0)=R,_(0) T,_,(d;) Tx,(a;) - Ry(a;)

(cosfO; —sinf;-cosa; sin@;-sina; a;-cos0;]
__|sinf; cosB; -cosa; —cosB;-sina; a;-sinb;
B 0 sin a; COS Q; d;

0 0 0 1

SbaseEEF(H) —AO 1(91) Al 2(92) . n 2,n— 1(911 1) An 1n(9n)
(R t
B (()T 1)

¥ b
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Forward Kinematics (2) e o e

® Pose of the end effector coordinate system relative to the base:
Sbase EEF(H) — AO 1(81) Al 2(92) . n 2,n— 1(911 1) An 1n(9n)

® This is a mapping of the configuration space C ¢ R" to
the workspace W c R™

R™ - R™: x = f(0)

¥ b
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Derivation of the Forward Kinematics
® Forward Kinematics: Joint angle position — end effector pose
R™ > R™: x(t) = f(0(t))
/ \

Pose of the EEF in W Joint angle vector in C

® How do the corresponding relationships look like?
® Joint angular velocities — end effector velocities
® Joint torques — end effector forces and torques

@ Approach: Derive differential forward kinematics — Jacobian matrix

Robotics I: Introduction to Robotics | Chapter 2
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Reminder: Jacobian Matrix

® Given a differentiable function | f1(x)
fiRrowm T

® The Jacobian Matrix contains all first-order partial derivatives of f.
Fora € R":

dfi df1
; axl( ) e axn( )
Jr(a) = (—l (a)> = af of 5 € R™X1
K (3xn11 (@) - E)xn; (a)

fi, ---, fm denote the component functions of f and x4, ..., x,, the coordinates in R".

¥ b
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Jacobian Matrix in Forward Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Problem: Forward kinematics is matrix-valued (n: number of joints)
f: R™ - SE(3)

= Jacobian matrix not defined

@ Solution: Select vector representation,
e.g. use roll, pitch and yaw angles to represent orientations

f: R* - R® -

<X DINK R

¥ b
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End Effector Velocities

B Assumption: The kinematic chain moves along a trajectory
6:R - R"

B Pose of the end effector x(t) € R® at time t:

x(t) = f(6(t))
B The end effector velocity depends linearly on the joint velocities (chain rule):

If ) _0f(6(t)) 09(t)

~ - = J;:(6®) - 6(0)

x(t) =

¥ b
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End Effector Velocities -A-‘(IT

Karlsruhe Institute of Technology

@ The Jacobian matrix relates Cartesian end effector velocities to joint angle
velocities

x(6) = J;(6(0)) - 6(t)

@ The following problems can be solved with this relation:

® Forward kinematics in the velocity space:
Given joint angle velocities,
which Cartesian end effector velocities result from them?

® Inverse kinematics in the velocity space:
Given Cartesian end effector velocities,
which joint angle velocities are needed to realize them?

54 Robotics I: Introduction to Robotics | Chapter 2
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Kinematics using the Jacobian Matrix (1)

Forward kinematics:

Given the joint angle velocities 6(t),
which Cartesian end effector velocities x(t) result from them?

Insert O(t):

x(6) = Jr(6(D) - 6(0)

Robotics I: Introduction to Robotics | Chapter 2
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Kinematics using the Jacobian Matrix (2)

Inverse kinematics:
Given a Cartesian end effector velocities x(t),
which joint angle velocities @(t) are necessary to realize them?

x(t) =Jr(6@)) - 6(t)
JFHe@) [ ]

0(t) =J7H(0()) - x(1)

Robotics I: Introduction to Robotics | Chapter 2
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Forces and Torques at the End Effector ﬂ(IT

Karlsruhe Institute of Technology

@ Assumption: The kinematic chain moves along a trajectory
:R-> R"

B The work done (force X distance) must remain constant regardless of the

reference system (friction neglected)
ty

f 20’(1:)7" t()dt=W = | x(®)T-F(t)dt
tq ty

® With:
6(t): R - R", Joint velocities
7(t): R - R", Jointtorques
x(t): R - R®, End effector velocities
F(t): R > R®, Force-torque vector at the end effector

< &
Robotics I: Introduction to Robotics | Chapter 2 H2T



58

AT

Forces and Torques at the End Effector
tz t2
j )T -t()dt=W = x()T - F(t)dt
tl tl

® The relation must apply for each time interval [t, t,], therefore:
o) -7(t) = x(t)T - F(t)

® Known relation between end effector velocity and Jacobian matrix:
)T () = 0(t)" - Jr(6() - F(t) x(0) =J;(6(0) - ()

® Since 6(t) is arbitrary, it follows that:
©(t) = JF(6(®) - F(t)

¥ b
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Forces and Torques at the End Effector

@ The Jacobian matrix relates forces and torques at the end effector to the
torques in the joints:

©(t) =JF(6(D) - F(¢)

@ The following problems can be solved with this relation:

W Given forces/torques at the end effector,
which torques must act in the joints to resist them?

@ Given the torques in the joints,
which resulting forces and torques act on the (fixed) end-effector?

¥ b
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Recap — DH Transformation Matrices ﬂ(IT

Transformation from LCS;_4 to LCS;
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Recap — Direct and Inverse Kinematics
Joint angle space Transformation Cartesian coordinates
(configuration space) (workspace)

Direct Kinematics

/ x = £(6) \

6y, ...,6,) € CCR" X c R™

\ Inverse Kinematics /
E.g. position and orientation

0=Ff"1(x
7 of the end effector
xEEF = (x,y,z, CZ,,B,]/)

n: Joint degrees of freedom (DoF)
m: Cartesian degrees of freedom
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Recap: Forward Kinematics in Position and Velocity Space = N Teeloo

Position space: x(t) = f(H(t))

__ofe(t 6 o(t 69 t

Velocity space: x(t) = ]f(H(t)) - 0(t)

¥ b
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Recap: Inverse Kinematics

x(6) = J;(6(0) - (1)
P CIG) R
0(6) = J71(6(0)) - x(t)

< &
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Recap — Jacobian Matrix

@ Velocity space
x(t) = J(6(0) - 6(t)

® Force space

(t) = JF(6(1)) - F(t)

¥ b
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Recap — Jacobian Matrix

d
x = f(0) o)
Jr(0) = (ﬁ(@) =
J ij

x=(0x,v,zap, )€ R"™%and 8 € R*

x=]r(0)-6

']

dy
df; _7

Jr(0) = (% (9)> =196, 0)
] i :

65 Robotics I: Introduction to Robotics | Chapter 2
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0f1

: ﬁ(e)

n
E Rmxn

of

: a—gn(e)

dy
ﬁ (0) € ]R6Xn
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Calculation of the Jacobian Matrix

® Each column of the Jacobian matrix corresponds to a joint 6; of the kinematic chain

i=(5r - ) emm

06, FL
agl 0 - f1 30, ©
fl 1
J5(8) = (— (e)) s fs € R™"
Lj 60"11 @) - m(g)

® Approach: Numerical calculation of the Jacobian matrix is carried out
column by column = joint by joint

¥ b
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Geometric Calculation of the Jacobian Matrix

x = f(6)
x=](0)-6
/x\ Ji1  J12
y J21 J22
Z: j31 j32
@ Jar1  Jaz
\'B / Js1 Js2
14 j61 j62
67 Robotics I: Introduction to Robotics | Chapter 2
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x=(xy2za/pP,y) € R"™®and § € R*=°

j16\
j26
j36
Jae

jse/
Je6

01
0,

Os
O

\

)

= (Z)) = (/1(6),]2(6), ...,Js(6)) - 6
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Geometric Calculation of the Jacobian Matrix S vl

1. Case: Prismatic joint
® Assumption: The j-th joint performs a translation in direction of the unit vector z; € R3.

156) = L2 _ 4] e ge

00

® Therefore:

2. Case: Revolute joint
® Assumption: The j-th joint performs a rotation around the axis z; € R3 at the position pj € R3.

01 (8) [Zj X (fp(0) —Pj)]
09 Zj

® Therefore:

]](0) € R

fp(8): position of the end effector

b
N
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Geometric Calculation of the Jacobian Matrix e e Ty
2. Case: Revolute joint 0 , 0) —p:
j 1;(8) = 9/ (0) ) z; X (f,(0) p])] c RS
69 ‘
® Manipulator with n joints
_ |20 X (fp(8) —Po) z; X (fp(e) - pl) Zp—1 X (fp(0) —Pn-1)
J(0) =
ZO Z1 Zn—l

¥ b
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Summary: Jacobian Matrix

® Forward kinematics:
f:R"> R® f(0)=x=(xy2z2apBY)

_(9 9f)_ nexn
Ir = (ael aen> €K

® Jacobian matrix:

® Properties:

® /- describes the relations between

® Joint angle velocities (n-dimensional)
and end effector velocities (6-dimensional)

® Joint torques (n-dimensional)
and forces and torques at the end effector (6-dimensional)

@ The Jacobian matrix depends on the joint angle configuration

¥ b
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Jacobian Matrix: Example (1)

® Manipulator with two joints 6, 6,

®Find x
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Jacobian Matrix: Example (2)

® Forward kinematics x = ()
x1\ _ (61
()=
@ Velocity of the end effector

x=]:(0)-6
% o,
(932) = <92>
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Jacobian Matrix: Example (3)
® Forward kinematics

x, = LycosB; + L,cos(6;+6,) <x1> _ (91>
x, = Lysin@; + L, sin(6, + 0;)

X2 A
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Jacobian Matrix: Example (4) -A-‘(IT

Karlsruhe Institute of Technology

@ Forward kinematics
xqy = L;cos6; + L, cos(0; + 6,)
xz = Ll sin 01 + LZ Sin(91 + 92)
@ Derivation

Xy = —L,0;sin6; — L,(0, + 0,) sin(6; + 6,)
X, = L1601 cos0; + Ly(01 + 6,) cos(6; + 6,)
® Jacobian matrix
(x'l) _ (—Ll sinf; — L, sin(6; + 0,) —L,sin(6, + 92)) <91>

X5 LicosB; + Lycos(6y +6,) Lpcos(6; +6,) /\4,
N J y
' Y
J1(6) J2(6)

¥ b
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Jacobian Matrix: Example (5) ﬂ(IT

Karlsruhe Institute of Technology

B End effector velocity
Vepr = J1(0)6; + J,(60)6,

® As long as /;(0) and J,(0) are not linearly dependent, a vggr can be
generated in any direction in the x;x,-plane.

(x’l) _ (—Ll sinf, — L, sin(0, + 6,) —L,sin(6; + 92)) (91>
xX,)

a Singula rities Licos@; + L,cos(61+6,)  Lpcos(6, +6,) /\g,

® /,(0) and J,(0) linearly dependent

(x‘l) B (—L1 sin@; — L, sin(6,) —L, sin(91)> 6,
- ](9) Si ngu Ia r X,) LQCOS 0, +Lycos(8;) L, cos(Gl/) 6,
. N
a Eg if 92 = 0° ( —(Ly + Ly) sin8, —Lzsinﬁl)
(Ly + Ly) cosf;  Lycosb,

® The possible movements of the end effector are restricted.

b
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Recap — Jacobian Matrix

@ Velocity space
x(t) = J(6(0) - 6(t)

® Force space

(t) = JF(6(1)) - F(t)

¥ b
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Kinematic Singularities

® If a robot is in a configuration Oy, gy14r € C, in Which itis no longer able to
move instantaneously in one or more directions, this is referred to as a
kinematic singularity.

® Configurations @, gy14r € C that lead to a kinematic singularity are called
singular.

® Can we distinguish singular from non-singular configurations?
— Yes, using the Jacobian matrix

There is no joint angular velocity that generates
an end effector velocity in the red direction.
= The configuration is singular.
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Kinematic Singularities: Example

) _ [y -cosB; + 1, - cos(B; + 92))
[ | : = =
Forward kinematics: x = f(0) <l1 sin®, + 1, - sin(6; + 6,)
_ll - Sin 91 — l2 . Sin(91 + 82) _lz . Siﬂ(@l -+ 92))

O i ix: =
Jacobian matrix J(8) ( [y -cosB; + 1, -cos(B; +6,) I, -cos(6;+6,)

z AT
® For the singular configuration @ = (Z’ O) :
(l, + 1) ! l .
T —\l1 2) T = TlL2'T=
2 2
J <( 64)> =UwnJ2) = ?1/— 1/—
L4l) — l-—
( 1 2) 5 2 \/E
® The first and second column are linearly dependent
I+ 1,
1= I "J2
2
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Kinematic Singularities: Jacobian Matrix (1)

Forward kinematics in the velocity space:
The end effector velocity is a linear combination of the columns of the

Jacobian matrix.

J0)= (52 ma= = 357) = Usdz o du)

96,’ 90,’
x=J(6)-6 |
6,
2= Uidydn) | 2 | =T 61400 by + 4], 6y
On

b
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Kinematic Singularities: Jacobian Matrix (2)

The end effector velocity is a linear combination of the columns of the Jacobian matrix.
x=J1-601+]2 6+ +], 0n J(0) = U]z Jn)

If a robot is in a configuration B ;y, 54,14 € C in Which it is no longer able to move
instantaneously in one or more directions, this is referred to as a kinematic singularity.

In mathematical terms, kinematic singularity means that the linear combination of
Jacobian columns does not span the entire end effector velocity space.

The Jacobian matrix /(@) has a rank smaller than the workspace dimension.

rank J(0) < m, x € R™
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Kinematic Singularities: Definition

Given a forward kinematics function f

x = f(0), 0 € C c R, xeEW cR™

and the corresponding Jacobian matrix

_(9f OF 9f mxn
](0) - (691’ 692’ ey agn) € ]:R ’

a configuration Bgjngy1ar € C is called singular if the rank of the Jacobian matrix
is smaller than the dimension of the workspace.

rank /() <m

¥ b
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Singularities

& Definition:
A kinematic chain is in a singular configuration if the associated Jacobian matrix
is not of full rank, i.e. two or more columns of /(@) are linearly dependent.

® A singular Jacobian matrix cannot be inverted
= Certain end effector movements are impossible

B In the vicinity of singularities, large joint velocities
may be necessary to maintain an end effector velocity. (

b
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Manipulability

® Manipulability is aa measure of the freedom of movement of the end effector;
indicates also how ‘close’ a configuration is to a singularity

® Manipulability ellipsoid
® Describes the end effector velocities for joint angle velocities with ||9|| =1

® Use J(0) to map the unit circle of joint angle velocities to the space of end effector velocities.

® Result: Manipulability ellipsoid

® Depends on joint angle configuration — : »561
® Analysis 22 ey @__/K

® Circle (‘large ellipsoid‘):
End effector movement is possible without restriction
in any direction.

N
N

® Degenerate cases (compressed ellipsoid): + 1(8,) . v _
End effector movement is restricted in certain directions. L— X1
jo
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Manipulability: Eigenvalue Analysis ﬂ(IT

® Calculate 4(0) = J(0) - J(O)T € R™*™ Volume V' is proportional to

B A(O)is \//1112 i = \/M = \/W
® Quadratic v, .
® Symmetric \ 7

@ Positive definite

® Invertible

® Eigenvalues A; and Eigenvectors v; of A

a Avi = Aivi
a (/111 — A)vi =0

B Si
SmgUIar values Manipulability ellipsoid:

B = /,11. Geometric representation of the manipulability

b
N
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Manipulability Measure

@ Scalar measures for manipulability
@ Smallest singular value
H(0) = O-min(A(e))

B Inverse condition

Omin (A(0))

H2(8) = Omax (A(6))

usz(8) = det A(0)

® Determinant
® Application:

® Analysis of joint angle configurations
@ Singularity avoidance
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Force Ellipsoid

(@) =JF(6() - F(t) - F®=J7T(6®) ()

f2

f
72 4 J7"(61)

f2 A

B
o

< &
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Manipulability and Force Ellipsoid

Q.CZ f2

X1 fi

/iiI\\\ 1(6y) T, J77(64)
i & : > L
Y 6: Y T

- >

J(62) ' i D)

f
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Manipulability — Examples

b
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Joint Angle Limits ﬂ(IT
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® A robot with the configuration space C c R" generally only covers part of the
underlying R™ as there are joint angle limits.

@ There is a minimum and maximum value for each joint
0 =(06,,06,..0,€C
0; € |8;min» Oimax]
B Exception: Continuous rotation joints (ARMAR-6)

B Joint angle limits restrict the reachable part of the workspace
Wreachable cWc R6

¥ b
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Representation of Reachability (1)

® Reachable part of the workspace of the
robot in R®

® Approximation using a 6-dimensional grid
® Entry in each grid cell:

® Reachability:
Binary: Is there at least one joint angle
configuration so that the Tool Center Point
(TCP) lies within the 6D grid cell?

® Manipulability:
Maximum manipulability value of a grid cell,

e.g. U (9) Visualization of reachability and
Vahrenkamp, N., Asfour, T. and Dillmann, R., Efficient Inverse Kinematics Computation based on mampUIablllty for the ARMAR-6
and ARMAR-IIl robots

Reachability Analysis, International Journal of Humanoid Robotics (IJHR), vol. 9, no. 4, 2012

b
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Representation of Reachability (2)

@ Generation
® Offline process in simulation

® Check all joint angles
@ in x steps (e.g. x=5°)
@ Determine the pose of the TCP using forward kinematics

@ Determine the grid cell and set the entry

B Application
® Pre-calculated reachability information for trajectory optimization

® Quick decision whether a pose is reachable with the end effector.
Constant computational complexity: O (1)

® Can be used for grasp selection
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Grasps that cannot be
reached can be efficiently
sorted out.
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@ Geometric Model
® Areas of Application
® Classification
® Examples
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Geometric Model

® Collision, contact calculation and motion planning

Grasping

95 Robotics I: Introduction to Robotics | Chapter 2



KIT

Geometric Model

® Collision freee motion planning
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Geometric Model

® Simulation

Imitation
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Geometric Model

Application

W Graphical representation of bodies
(visualization)

W Starting point for distance calculation
and collision detection

@ Basis for calculating the movements of body
parts

@ Basis for determining the acting forces and
torques
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Geometric Model: Classification

B Classification according to space
® 2D models
® 3D models

B Classification according to basic primitives
® Edge or wireframe models
® Surface models
® Volume models
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Block World

® The bodies are represented by bounding boxes.

® Used in the first steps of collision avoidance.

® Class: 3D, volumes or surfaces

100
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i

ARMAR-III block world model
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® The bodies are represented by polygons (edges).

® Used for quick visualization.

® Class: 3D, edges or surfaces

b
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Volume Model

® The bodies are represented accurately.
® Precise collision detection possible.
® Used for animations.

® Class: 3D, volume

ARMAR-6 head model ARMAR-III volume model

b
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Collision Model

® The bodies are represented in simplified form.

Q.

ARMAR-6 collision model ARMAR-III coII|S|on model

b
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® Fast collision detection possible

® Class: 3D, volume
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S u m m a ry Karlsruhe Institute of Technology

@ Kinematic model

@ Denavit-Hartenberg convention: Minimum number of parameters to describe
transformation between consecutive joints

® Direct kinematics problem: Calculate end-effector pose from joint angles
® Jacobian matrix: The solution for everything ©

@ Singularities and manipulability

® Reachability

@ Geometric model

W Classification according to space (2D/3D) and basic primitives (edge or wireframe
models, surface models and volume models)
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